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Abstract

Concreteness and abstraction are key in educational research in mathematics,
both when discussing the nature of mathematics in itself, but also when explor-
ing how to learn and teach mathematics. However, while the terms concrete and
abstract are often used in the field, they are not always used with the same mean-
ing. For example, the word concrete can be used to mean specific, relatable, visual,
tangible, while the word abstract can be used as general, rigorous, vague, sym-
bolic. While several scholars have emphasized the need for a multidimensional
and fine-grained framework to articulate these differences in meaning, we further
argue that it is crucial to precisely define how the terms concrete and abstract are
actually used by the research community. Towards this goal, we offer three con-
tributions: First, we empirically and systematically identify the various meanings
of concrete and abstract used in the literature. Second, we offer a data-informed
taxonomy to organize this semantic landscape and support research inquiry.
And third, we offer templates for the design of future mathematics education
interventions and studies.
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1 Introduction

Concreteness and abstraction are central concepts in mathematics. First, when con-
sidering the nature of mathematics, some researchers and philosophers argued that
mathematics is abstract, such as proponents of the formalism perspective (Ernest,
1985). In contrast, others argued that it is concrete, such as proponents of the embod-
ied perspective (Lakoff and Nufiez, 2000). Finally, others argued that mathematics is
at the interface between concreteness and abstraction (Courant and Robbins, 1996).
Second, when considering how to teach and learn mathematics, scholars argued that
abstract representations promote better transfer (Kaminski, Sloutsky, and Heckler,
2008), but also that well-designed concrete examples may actually perform as well
(Trninic, Kapur, and Sinha, 2020), or that a progression from concrete to abstract rep-
resentations, e.g. concreteness fading, should be favored (Bruner, 1974; Fyfe, McNeil,
Son, and Goldstone, 2014).

Through these few examples, we can already understand how central the terms
concrete and abstract are to mathematics and mathematics education. It thus follows
that the meaning of these terms needs to be unambiguous in order for scholars to
be able to discuss their role in doing and learning mathematics. For example, when
scholars debate on whether mathematics is concrete or abstract, it is sometimes unclear
whether they actually debate about the nature of mathematics, or about the meaning
of the terms concrete and abstract. Moreover, the terms concrete and abstract may
not accurately capture all the nuances that scholars are investigating in mathematics
education, but may be simplifications that, while being practical, may also create
confusion.

These issues have been raised before, as previous work attempted to offer definitions
(Wilensky, 1991; Lohr, 2023) for these key terms, and identified that the relationship
between concrete and abstract should not be viewed as a dichotomy, but rather as a
spectrum (Fyfe and Nathan, 2019). Furthermore, scholars even argued that an object
can be both abstract and concrete (Coles and Sinclair, 2019; Wilensky, 1991): for
example, while a mathematical symbol may be abstract because it is formal, it may
also be concrete to a mathematician because it is familiar. Overall, previous work
advocated for a multidimensional framework to define abstraction and concreteness,
encompassing the various meanings of the terms (Trninic et al., 2020; Chatain, Varga,
Fayolle, Kapur, and Sumner, 2023; Belenky and Schalk, 2014; Fyfe and Nathan, 2019;
Petersen and McNeil, 2013), and even offered initial suggestions of such frameworks
(Belenky and Schalk, 2014; Fyfe and Nathan, 2019). However, to this date, there is
no comprehensive framework accounting for all the meanings of concrete and abstract
that are effectively used by scholars in the field of mathematics education.

In this work, we offer a novel approach to the question by following a data-driven
approach to map the semantic landscape of concreteness and abstraction in math-
ematics education. As a community, reflecting on the key terms we are using and
defining them precisely can support scientific inquiry and even meaningfully advance
the field (Chalmers, 2011; Vermeulen, 2018; Balcerak Jackson, 2014; Hirsch, 2005;
Jenkins, 2014).

To build towards this, we aim to achieve two goals with this work:



G1 Identify the different meanings of the terms abstract and concrete in the field of
mathematics education. Specifically, we want to answer: What do scholars mean
when they use the terms abstract and concrete?

G2 Define a data-driven taxonomy that organizes the various meanings of abstract and
concrete in the field of mathematics education.

Specifically, our goal is not to converge towards one best definition of concreteness
or abstraction, but rather to support fine-grained scientific inquiry through a taxonomy
of the semantic landscape acknowledging and organizing the various meanings of the
terms used by scholars, and their relevance for mathematics education research.

We offer the following contributions:

C1 Empirical evidence of the various meanings of the terms abstract and concrete used
in mathematics education;

C2 A taxonomy of the semantic landscape of abstract and concrete, informed by both
theory and data, and supporting scientific inquiry;

C3 Templates to reflect on and classify learning interventions along different axes of
concreteness and abstraction.

In the future, we hope that this work will help reflect on and organize past research,
for example seemingly conflicting empirical results (Kaminski et al., 2008; De Bock,
Deprez, Van Dooren, Roelens, and Verschaffel, 2011; Trninic et al., 2020; Burns and
Hamm, 2011; Shurr, Bouck, Bassette, and Park, 2021), support in depth and nuanced
scientific inquiry, and generate critical conversations and questions to further advance
the field. In addition, we hope that our framework will improve qualification and design
of future studies and interventions.

2 Related Work

Philosophers of mathematics used the words abstract and concrete extensively to
describe the nature of mathematics. However, instructors and educational researchers
used the same terms to describe artifacts and methods used to teach and learn mathe-
matics. In this section, we detail various examples to highlight not only how abstraction
and concreteness are crucial in mathematics practice and education, but also the diver-
sity of usage. As such, we provide preliminary evidence of the need to map out the
semantic landscape of concreteness and abstraction in mathematics education.

2.1 Concreteness and abstraction in mathematics education

The notions of concreteness and abstraction are central to mathematics education, at
several levels: 1) when considering the nature of mathematics and 2) when considering
how to learn and teach mathematics. In the following, we provide an overview of both
accounts.



2.1.1 The nature of mathematics

In this section, our goal is not to state whether mathematics is abstract or concrete in
nature, but rather to show that both terms have been used to describe mathematics,
in various ways.

Power of generalization

Often, mathematics is described as an abstract discipline, concerned with the identi-
fication of powerful generalizations (Dreyfus, 2020): “There is broad agreement that
the essential characteristics of mathematical knowledge are its generality and abstract-
ness” (Bishop, Mellin-Olsen, & van Dormolen, 1991, p. 61), and “generality can be
constructed through abstraction of the essential invariants in the context of a sys-
tem of actions” (Dorfler, 1991, p. 73). Abstraction is often considered in a vertical
paradigm, where concrete objects, often real-world, contextualized objects are consid-
ered low level, and abstraction “peels away” superficial details towards higher level
ideal objects, which capture the essence of a concept (DiSessa, 2018, p. 21). In this
paradigm, scholars speak of horizontal transfer, i.e. transfer within the same level of
abstraction, and vertical transfer, towards a more ideal or a more contextualized rep-
resentation (Bossard, Kermarrec, Buche, and Tisseau, 2008). However, it has also been
argued that abstraction is rather an “imperfect and somewhat unstable translation
between symbolic systems”, following a horizontal paradigm (Wagner, 2019, p. 1).
In this paradigm, abstracting does not mean creating and identifying ideal objects
but rather building translations and transitions between concrete objects. Artigue
(2009) suggests that this has implications for education as a an approach following a
horizontal paradigm may support cognitive flexibility.

Symbol systems and formalisms

The formalism view of mathematics states that mathematics is a “meaningless game
played with marks on paper, following rules” (Ernest, 1985, p. 606). Generally, math-
ematics is effectively communicated and manipulated using symbol systems and rules
that are inherently abstract and meaningless if not interpreted (Harnad, 1990; Penrose,
1991). While these symbol systems may be considered as the essence of mathe-
matics, they may also be viewed as representations only: shapes and forms that
could be redesigned to directly embed meaning, for example leveraging more iconic
representations (Harnad, 1990).

Connection to the real world

It is quite common for novices to believe that mathematics is an abstract subject
in nature, disconnected from the real world, and, as such, difficult to learn (Schoen-
feld, 1992). In contrast, Dossey (1992) argued that the nature of mathematics is
strongly connected to the real and concrete world: “Aristotle’s view of mathematics
was not based on a theory of an external, independent, unobservable body of knowl-
edge. Rather, it was based on experienced reality, where knowledge is obtained from
experimentation, observation, and abstraction” (p. 40). Similarly, Lakoff and Niinez
(2000) suggested that mathematics is embodied, i.e. the result of our sensorimotor



experiences with the world. Finally, Courant and Robbins (1996) viewed mathematics
as neither abstract nor concrete, but rather as a connection between the two realms:
“Mathematics hovers uneasily between the real and the not-real; its meaning does not
reside in formal abstractions, but neither is it tangible. [...] Mathematics links the
abstract world of mental concepts to the real world of physical things without being
located completely in either” (p. 0).

Rigid or malleable

Related to the question of the connection with the real world lies the question of the
process of developing mathematics as a discipline: “Some see mathematics as a static
discipline developed abstractly. Others see mathematics as a dynamic discipline, con-
stantly changing as a result of new discoveries from experimentation and application
(Crosswhite et al., 1986)” (Dossey, 1992, p. 39). Here, the abstractness of the disci-
pline is connected to its rigidity, and is opposed to a certain malleability tied to the
process.

A human and humane discipline

Another way of looking at mathematics is falliblism (Ernest, 1985), which considers
mathematics as “what mathematicians do and have done” (p. 608). Through this lens,
mathematics includes imperfections tied to all human creation (Ernest, 1985; Lakatos,
1976; Davis, Hersh, and Rota, 1981). Moreover, falliblism emphasizes the “immense
practical usefulness of the subject” (Ernest, 1985, p. 609). This view is shared by oth-
ers who consider mathematics to be a concrete discipline, which is anchored in our
lived experiences: “Mathematics is a product of the neural capacities of our brains,
the nature of our bodies, our evolution, our environment, and our long social and
cultural history” (Lakoff & Nunez, 2000, p. 9). From this perspective, mathematics
is very concrete, in the sense that it is relatable and connected to real world expe-
riences. Importantly, according to Ernest (1985), falliblism is the only perspective
that supports a humane approach to the discipline. Indeed, although mathemat-
ics used to be considered elitist, there has been a push for equity in mathematics,
acknowledging the importance of considering mathematicians of different genders and
backgrounds (Zevenbergen, 2001). The falliblism perspective thus supports, by def-
inition, diversity in mathematics. Instead of focusing on abstract ideals, falliblism
highlights mathematics as a concrete discipline, aggregating diverse perspectives and
including imperfections tied to real-world experiences and human creations.

Affect and aesthetics

While some might feel indifferent towards mathematics and find it a rather cold and
abstract topic, others may build strong emotional connections towards it: “Math-
ematics as an expression of the human mind reflects [...] the desire for aesthetic
perfection” (Courant & Robbins, 1996, p. 0), or again “Mathematics is one of the
most profound and beautiful endeavors of the imagination that human beings have
ever engaged in” (Lakoff & Nutiez, 2000, p. 5). In particular, aesthetics were often
associated with concrete experiences offered to students learning mathematics. These
experiences targeted their subjective sensitivity, and were often related to perceptual



richness (Sinclair, 2001). However, scholars also considered how aesthetics and beauty
can be tied to abstraction, for example, in proofs and theorems using symbolic and
formal representations (Sinclair, 2001; Sinclair, 2011).

Overall, there are many views and philosophies of mathematics (Ernest, 1985;
Wilkinson, 2021), and conflicting perspectives on the abstract and concrete nature of
mathematics.

2.1.2 Teaching and learning mathematics

Beyond the question of the nature of mathematics lies the question of how to teach
and learn mathematics. Generally, the question of the role of concreteness and abstrac-
tion in learning mathematics is a crucial one, underlying several inquiries such as:
Can concrete examples impair learners’ ability to abstract? At what point should edu-
cators introduce concrete representations when teaching mathematical concepts? Are
abstract representations preventing learners from relating to the materials?

In this section, our goal is not to show whether abstraction or concreteness is best
to support sense-making of mathematics, but rather show that, once again, both terms
have been used in various ways in the field.

Conceptual metaphors to map concrete to abstract

From a cognitive perspective, proponents of the conceptual metaphor theory argued
that any imperceptible concept must be understood in terms of an experiential con-
cept (Lakoff and Nuniez, 2000; Kovecses, 2010) or - importantly for the present review
- abstract concepts must be understood in terms of concrete concepts. In short, as
humans gain their first knowledge from how they exist and interact with the world,
they build on this knowledge by relating new information to these initial experiences
called image schemas. In mathematics, one of the easiest examples might be the con-
ceptual metaphor Categories are Containers (Lakoff and Ntnez, 2000). Understanding
categories is not trivial at all, but it helps to conceptualize them as containers that
are a bounded regions in space (the category) containing objects (category members).
Principles such as the excluded middle, the modus ponens, the hypothetical syllo-
gism or the modus tollens are then simply metaphorical applications of a spatial logic
present in the Container schema (Lakoff and Ninez, 2000).

One concrete or abstract representation

Several studies were conducted to explore the impact of the use of concrete and
abstract representations in mathematics education. Kaminski et al. (2008) showed
that introducing concrete examples representing mathematical objects with real-world
items such as tennis balls, pizza slices, or cups, may impair students’ performance
on abstract transfer tasks using more abstract representations. However, follow up
studies showed that slightly adjusting the concrete examples to make them more relat-
able (Trninic et al., 2020) or adapting the posttest to include transfer tasks, which
align better with the learning task (De Bock et al., 2011), canceled this effect, mean-
ing that the effectiveness of concrete representations may lie more in how relatable
they are rather than in the sole fact that they exist in the real world.



Moultiple concrete or abstract representations

The use of several representations, either abstract or concrete, was also explored.
For example, Schalk, Saalbach, and Stern (2016) showed that introducing general
formalisms (i.e. abstract) instead of using solely specific cases (i.e. concrete) resulted
in worse transfer. In this context, Rau (2017) discussed the necessary conditions for
the effectiveness of multiple visual representations. She defined the representational
dilemma: Students must make sense of both the representations and the concepts they
represent (Rau, 2017; Ainsworth, 2006; McElhaney, Chang, Chiu, and Linn, 2015).
Making sense of a visual representation means understanding the mapping between
this representation and the concept it represents. The success of this process, therefore,
lies in the quality of this mapping, but also in the interaction between the learner and
the representation, including affective mechanisms and prior knowledge relevance.

Concreteness fading

Concreteness fading is a pedagogical approach leveraging several representations orga-
nized in a concrete to abstract progression, originally recommended by Bruner (1974).
Specifically, the concreteness fading design suggests that “concepts and procedures
should be presented in three progressive forms: (1) an enactive form, which is a phys-
ical, concrete model of the concept; (2) an iconic form, which is a graphic or pictorial
model; and finally (3) a symbolic form, which is an abstract model of the concept”
(Fyfe et al., 2014, p. 11). This approach was extensively explored in the literature,
exploiting various representations and sequencing (Suh, Lee, and Law, 2020). Recently,
the generalizability of concreteness fading to other sciences was questioned as what
is an abstract and concrete representation differs greatly between STEM domains
(Kokkonen and Schalk, 2021). We suggest that already within mathematics education,
there is variety in meaning of the terms.

Learning as a process of concretion

Rather than at the representation level only, concreteness and abstraction was further
mentioned as part of the process of learning. Papert (1980) related learning to the pro-
cess of changing something “otherwise abstract”, like equations, into a “comfortable
friend”, like gears (p. xviiiff). More generally, Dewey (1910) argued that understanding
is changing something abstract, i.e. “strange and perplexing”, into something concrete
i.e. “plain and familiar” (p. 118).

As concreteness and abstraction are central to mathematics education, it is cru-
cial to understand what these terms mean. However, while all these works deal with
these concepts, they often mean different things, sometimes even resulting in different
learning outcomes (Kaminski et al., 2008; De Bock et al., 2011; Trninic et al., 2020).
In the following, we present why mapping the semantic landscape of concreteness and
abstraction in mathematics education would offer an opportunity for growth in the
field.



2.2 Mapping the semantic landscape

Past work has highlighted the importance of discussing and improving the definitions
of the terms concrete and abstract. Several such definitions have been suggested, for
example centering on physicality or familiarity (Wilensky, 1991; Lohr, 2023). How-
ever, scholars further argued that the terms concrete and abstract describe a spectrum,
rather than two disjoint categories (Fyfe and Nathan, 2019), and could even cover a
finer-grained multidimensional space rather than an unidimensional definition (Trninic
et al., 2020; Chatain et al., 2023; Belenky and Schalk, 2014; Fyfe and Nathan, 2019;
Petersen and McNeil, 2013). Indeed, Trninic et al. (2020) mentioned the need to
“replac[e] the abstract—concrete dichotomy with a more comprehensive framework” (p.
13). Similarly, Chatain et al. (2023) argued that there is a “need for a more rigorous
definition of ‘abstraction’ and ‘concreteness’ in the field of mathematics education”
(p. 10) as, in their study, different forms of concreteness resulted in different learn-
ing outcomes and overall motivation. Similarly, Coles and Sinclair (2019) wrote that
some objects can simultaneously be categorized as both abstract and concrete: “While
the alphanumeric inputs of programming languages such as Logo may seem abstract,
being symbolic as they are, they can also be seen as concrete for some children inas-
much as some children will have had encounters with these symbols that give them a
direct and visible reference (Wilensky, 1991)” (Coles & Sinclair, 2019, p. 467).

In an attempt to address this need for a multidimensional definition, scholars
formulated conceptual frameworks, to which we compare our approach and resulting
taxonomy in Section 5.3 (Belenky and Schalk, 2014; Fyfe and Nathan, 2019). In the
following, we argue for the relevance of our approach, which is systematic and data-
driven. Specifically, our goal was to build a taxonomy of the semantic landscape of
concreteness and abstraction that is comprehensive and informed by actual usage
of the terms in the literature.

Generally, the importance of clarifying and detailing the meanings of key terms
within a scientific domain has been extensively discussed in philosophy of language.
Indeed, Chalmers (2011) has elaborated the concept of verbal disputes: disagreements
that arise partly or wholly in virtue of a disagreement about the meaning of cer-
tain words. The parties involved are often unaware that their disagreement is rooted
in these differences in word meanings. Different kinds of verbal disputes have been
discussed in the literature, such as “pragmatic verbalness”, i.e. “talking past each
other”, or “doxastic verbalness”, i.e. “not really disagreeing” (Becker, 2022). A closely
related concept is the concept of terminological inconsistency, in which the same term
is unknowingly used with different meanings or connotations by the same or different
individuals. While there is, to our knowledge, no explicit discussion of the concept of
terminological inconsistencies in the philosophy of language literature, it seems plausi-
ble that such inconsistencies, like verbal disputes (Vermeulen, 2018), can be resolved by
clarifying usage. Either way, such disputes and inconsistencies can constitute obstacles
to understanding and scientific inquiry, because they distract from more substantive
issues, e.g. in the present case, the mechanisms explaining ease or difficulty of learning.

Our paper is driven by the definition of what Chalmers (2011) calls a “broadly
verbal dispute”:



“A dispute over S is (broadly) verbal when, for some expression T in S, the parties disagree
about the meaning of T', and the dispute over S arises wholly in virtue of this disagreement
regarding 7T'.”

In our context, S could be a statement such as “math is difficult to learn because
it is abstract”, where T' is “abstract.” A party believing that “abstract” stands for
“generalizable” might disagree with S, while a party believing that “abstract” means
“unfamiliar” might agree with S. Similarly, if S is “concrete representations improve
learning outcomes in mathematics” and 7' is “concrete”, parties considering the mean-
ing of “concrete” to be “relatable” or “informal” might disagree about S. However,
when discussing the terms more precisely, and engaging in shared reflection, both par-
ties would realize that (1) they do not actually disagree, and (2) there is a need to
better describe the meanings of the terms. Again, the latter is already the case as many
scholars in the field argued for and have suggested multidimensional frameworks. In
this paper, and as illustrated in Section 5.2.1, we ought to support and guide this res-
olution process by mapping out the semantic landscape of the terms “concrete” and
“abstract”.

Indeed, because verbal disputes and terminological inconsistencies turn on some
disagreement regarding language, they can be resolved when all parties to the dispute
agree to use certain words in specific and more precise ways. By systematically spelling
out different ways in which the words abstract and concrete are used and understood
in the literature, we hope to dispel any verbal dispute and prevent terminological
inconsistencies connected to the use of these polysemous terms in educational research.
Furthermore, we believe that our overview of the semantic landscape can serve further
scientific inquiry by enabling identification of trends, gaps, and critical questions, but
also by helping to organize and compare both past work and future work.

3 Method

This paper aims to provide an overview of how educational researchers conceptualize
the terms abstract and concrete as well as to generate a taxonomy that structures
our findings in a way that is useful to researchers, for scientific inquiry, but also when
designing learning activities that aim to concretize in any form. We chose a qualitative
approach that can be divided into three main steps (Figure 1):

® Data preparation: The creation of the corpus including choosing an appropriate
database, designing the search string, and removing duplicates, books and theses.

¢ Data coding: The identification and coding of words associated with/used synony-
mous with abstract/concrete in the individual papers.

® Taxonomy definition: The organization of the generated codes associated with
concreteness and abstraction into a taxonomy.

We hold an experientialist perspective, meaning that to us, “language is a tool for
communicating meaning” (Clarke & Braun, 2021, p. 164). Importantly, we assume that
the language used by the authors of the papers in our corpus, in conjunction with the
words abstract or concrete, provides information about how the authors conceptualized
these terms.



Step 1 Build the corpus (Sections 3.1 and 3.2)

Search Retrieve papers, Identify sentences including Expand to contexts
ERIC database —» removing duplicates, —» words from the sets —>» including previous and

books and theses concrete* and abstract* following sentences

Corpus of papers Corpus of contexts

Step 2 Identify the words related to "concrete" and "abstract" (Section 3.3)

Annotate contexts Aggregate words into Discard low Visually identify and

; . ies of i i irrel
using tailored-made  — categories of common __ occurence categories discard irrelevant
web a stem per paper and then (appear in less than categories using
PP over the corpus 4 papers) word clouds

v v v v

List of relevant

List of words related List of categories related List of high occurence :
. " " P 2 categories related
to "concrete" and to "concrete" and categories related to " !
" " " " " " " " to "concrete" and
abstract" per context abstract” over concrete" and "abstract "bstract"
and per researcher our corpus over our corpus

over our corpus

Step 3 Define the taxonomy (Section 3.4)

Organize categories using an
iterative qualitative approach

v

Final taxonomy

Fig. 1 Overview of our process from data collection to taxonomy definition.

Further, we hold a realist perspective insofar as the researchers generating this
taxonomy are not removed from the process but are active participants. Therefore,
we acknowledge the individual backgrounds of the four involved researchers (Muma,
1991): As part of the initial process of personal reflexivity, we report their profiles
in Table 1, as well as their perspective statements in Table 2 (Clarke and Braun,
2021). Importantly, R1 and R2 offer an external perspective as they have little to
no experience in the field of mathematics education, while R3 and R4 offer a more
informed perspective.

We aimed for a high degree of trustworthiness as defined by Lincoln and Guba
(Lincoln and Guba, 1985; Stahl and King, 2020). According to them, trustworthiness
involves four dimensions: credibility, dependability, transferability, and confirmabil-
ity. First, we increased credibility by triangulating coder perspectives. Every data
point was analyzed twice. The perspectives were diverse in the sense that two coders
were experts in the field and two coders provided outsider perspectives (see Table 2).
Second, we increased dependability by documenting and continuously discussing the
analysis process. Specifically, in the second iteration of the analysis process, R3 and R4
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Table 1 Profiles of the researchers involved in the data collection, coding, and analysis
process at the time of the coding phase.

Id ‘ Gender Highest degree achieved ‘ Collection Coding Analysis

R1 M Research assistant Yes Yes No
R2 M Post-doctoral researcher No Yes No
R3 F Doctoral researcher No Yes Yes
R4 F Doctoral researcher No Yes Yes

Table 2 Perspective statements for researchers involved in the data coding

Id ‘ Perspective statement

R1 | R1 has a Bachelors degree in Psychology and Political Science and has assisted in the
coding of multiple projects. He has little to no experience in the field of concreteness and
abstraction in mathematics education.

R2 | R2is an expert in linguistics, specifically semantics, with little to no experience in the field
of concreteness and abstraction in mathematics education, and an interest in analytical
philosophy.

R3 | R3is an expert in embodied mathematics and embodied interaction for mathematics learn-
ing, with experience in the field of concreteness in mathematics education, and a positive
bias towards a horizontal paradigm (i.e. relational) of abstraction in mathematics.

R4 | R4 is an expert in embodied (haptic) (quantum) chemistry learning, with experience in the
field of concreteness in a chemical context (i.e. perceivable) and previous encounters with
concreteness in mathematics education as applied in quantum chemistry.

organized the codes independently of each other before coming together and forming
the third iteration of the taxonomy. Third, we increased transferability by contrast-
ing the proposed taxonomy with other established frameworks. Finally, we increased
confirmability by offering a description of the process in Appendix A as well as fur-
ther examples of data excerpts in the supporting material. That being said, we do not
claim objectivity, as we offer a specific perspective.

3.1 Data preparation

First, R1 assembled a corpus of papers focusing on concreteness and abstraction in
mathematics education. To do so, we focused on the ERIC database' due to our
interest in research situated in educational contexts, and on peer-reviewed journal
articles only. We used the following search query:

Search string applied for the initial corpus on October 31, 2022: abstract: (
(concrete OR concreteness OR concretize OR abstraction OR abstract)
AND mathematics AND (High-school OR Higher Education) AND (Learning OR
education OR teaching) -¢‘Machine Learning’’ ) OR title:( (concrete OR
concreteness OR concretize OR abstraction OR abstract) AND mathematics
AND (High-school OR Higher Education) AND (Learning OR education OR
teaching) -‘‘Machine Learning’’

Search string applied after first revision round on February 07, 2025, to be added
to the initial corpus: abstract:( (concrete OR concreteness OR concretize

Yhttps://eric.ed.gov/, accessed in 2023
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OR abstraction OR abstract) AND mathematics AND (primary OR secondary)
AND (Learning OR education OR teaching) AND pubyearmax:2022 -‘‘Machine
Learning’’ ) OR title:( (concrete OR concreteness OR concretize OR
abstraction OR abstract) AND mathematics AND (primary OR secondary)
AND (Learning OR education OR teaching) AND pubyearmax:2022 -‘‘Machine
Learning’’

We removed machine learning articles through the query as we are only interested
in human learning in this work. Furthermore, we later excluded works that investigated
“abstracts”, as in paper abstracts (see description of the data coding in Section 3.2).
These were the only content-related exclusion criteria implemented.

From this search, we collected 441 references. We then cleaned our sample to
remove duplicates and exclude books or theses, resulting in a total of 401 papers. From
this sample, we could retrieve the content of 368 papers through open or institutional
access, which constitutes our final sample (detailed in supplementary materials).

We then converted all documents to a text format in the following way: first, we
used the Poppler library (Noonburg and Cid, 2005) to convert the PDF to a plain text
format; we then removed the abstract and references from the output using regular
expressions. Noticing that, in the output of these two steps, many words of interest
were split across lines due to hyphenation, we performed a final manipulation: for
any line ending in a hyphen, we tried combining the string before the hyphen with
the beginning of the next line; if the result belonged to a dictionary of English, we
removed the hyphen and joined the lines.

Using a regular expression based on the roots of the words concrete and abstract,
we identified the morphologically related words present in our corpus. We summarize
the set of the selected morphologically related words in Table 3, excluding “Abstract”
as section title. In the rest of this section, we use concrete* and abstract® to describe
these sets.

Table 3 Sets of selected words morphologically related to “concrete” and “abstract”.

Set name ‘ Content

concrete™ concreteness, concrete, concretise, concretize, concretises, concretizes, concre-
tised, concretized, concretising, concretizing, concretely
abstract* abstraction, abstract, abstracts, abstracted, abstracting, abstractly

Using these sets, we identified the contexts of these words in the papers. Specifically,
we looked for the words of concrete* and abstract* in the papers, and extracted
the sentence containing the word, as well as the previous and following sentences to
compose a context. If the previous or following sentence also contained a word from
our sets, we extended the context to one more sentence in that direction until no word
from our sets was found. This allowed us to have complete self-contained contexts
and avoid redundancy within our dataset. Through this procedure, we collected 4309
contexts.
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3.2 Data coding

Once we identified the relevant contexts in the papers, we needed to identify the words
most likely to relate to those from concrete* and abstract*. To do so, we first tried an
automated statistical approach to identify the words that co-occurred most often with
abstraction and concreteness. Specifically, we gathered all words whose frequency of
occurrence in contexts containing the words abstract* and concrete* was significantly
higher than their frequency of occurrence in any context. Significance testing was done
using Fischer’s exact test (Fisher, 1970). This analysis tended to produce very low-
frequency terms (such as brandy), probably due to violated assumptions of our test,
word occurrences being not independent from each other.

As such, we decided to focus on a manual selection of these words. We first
attempted to create a guide for the coding that would result in rater-independent
codes. However, we found that the different perspectives of the coders were relevant
for the coding process and that we are actually interested in the different codes that a
coder may relate to the words of interest. Therefore, we formulated a task that allowed
some room of interpretation to the coder. The task was formulated as follows:

“Identify the intended meaning of the words concrete and |abstract in this text.
Accordingly, select in green the words that are more related to concrete and in

purple the words that are more related to [abstract . If a word is not related to
either, leave it blank.”

To support the annotation process, we designed and implemented a browser appli-
cation where researchers can review each context and highlight, by clicking or touching,
the words related to concrete* and abstract® within one context (Figure 2). The
contexts are presented in a random order, starting with the contexts with the low-
est review count. R1, R2, R3 and R4 performed these annotations, until all contexts
had two reviews and each researcher reviewed half of the contexts. This resulted in
a workload of approximately 1860 contexts per researcher, an amount that allows us
to confidently claim convergence of code generation. In addition, R3 and R4 reviewed
the corpus added after the first revision round on February 07, 2025, resulting in addi-
tional 592 contexts per reviewer. It is important to note that this second analysis was
performed after the taxonomy generation. However, we did not find any additional
codes that did not fit our generated framework.

Our tool also allows to label a specific context as irrelevant. We used this option
for contexts that could not be parsed properly, that should not have been parsed, or
that are not in English. For example, some papers reviewed “abstracts” of papers.

Before starting data annotation, all four researchers discussed their understanding
of the task, and applied it on several contexts from our corpus until reaching a com-
mon understanding. Again, this common understanding was not intended to result
in equal codes, but rather in an equal approach to the task. Following our qualita-
tive approach, the goal was not to resolve disagreements regarding the words selected
by each researcher, but to reach a common understanding of the task and the intent
(Clarke and Braun, 2021).
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Abstract Concrete

#8622317055
In this study, we come to understand that for the abstraction of geometrical objects, the children’s bodily
activities became grounds for constituents of reflecting on geometrical concepts. For children, gesturing was a way
of coping with the challenge of unknown objects and of bringing forth a dynamic balance of abstracting and acting on
learning concepts. When children encountered new ideas, their gestures were emerging and organizing their thinking
in visible and concrete dimensions. In observing this process, we have no evidence for the separation of thinking
and communicating, which are two processes that in fact appear to mutually stimulate each other (Vygotsky, 1986). As
the concepts become more abstract and complicated over time, children’s hand movements also embody the complexity of
thinking and expressing over the concepts. The following Episode #3 shows an example of children’s gestures in the
process of thinking in a new situation.

X Trash 7+ Next

Fig. 2 Screenshot of the application used to select the words. The words from concrete* and
abstract® are highlighted in opaque colors. The researcher can then highlight related words in trans-
parent colors. To change the highlighting color, researchers can press the “Abstract” and “Concrete”
buttons above the text. If the data is incorrect, researchers press the “Trash” button. Some notes can
be added by pressing the notepad. Upon completion, researcher press the “Next” button. The task
description can be toggled using the gear button. Finally, a unique identifier for the current context
is displayed and can be used as reference for future discussions.

3.3 Pre-processing

We aggregated the annotations of all researchers per paper. For each paper, we aggre-
gated the annotations per common stem using the NLTK English stemmer (Bird,
Klein, and Loper, 2009). We then used the most common word of each category as
the representative. This means that even if a word, or words with a common stem,
appeared several times within one paper, it is only counted once. We then aggregated
annotations over our entire dataset, using the same process: aggregate per common
stem, and use the most common word as a representative. In this step, we assigned
the count of the whole category to the representative. For example, the category
(virtually, 5), (virtual, 7), (virtuality, 1) would become (virtual, 13).

The dataset was then refined by visually inspecting the word clouds produced by
the individual researchers as well as the total word cloud (provided in the Appendix A).
From this, we defined outliers such as “algebra” or “mathematics” that were found in
many contexts but that did not contribute a special meaning to the words abstract
or concrete. Finally, we decided on a cut-off point of minimal occurrence for a word
to be added to the final dataset by plotting the corpus that would remain if we only
considered words that occurred a certain number of times or more (see Figure 3). We
selected a threshold of 4 occurrences minimum per word, as the corpus stabilized after
4 to 5.This means that while a large number of words were only coded in one to three
papers and hence were not representative for the field, the remaining codes were found
at higher frequency. As this method is ambiguous to a certain extent, we chose the
more generous cut-off. We provide data examples per code as supplementary material.

3.4 Taxonomy definition

To organize the taxonomy, we followed an expert approach rather than an auto-
mated approach. Indeed, we explored automated approaches such as GloVe to evaluate
semantic proximity (Pennington, Socher, and Manning, 2014), followed by a Principal
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Fig. 3 Words which occurred less than four times were excluded from the analysis. One occurrence
is defined as found in one paper. The curve is fitted exponentially.

Component Analysis (PCA) to organize the meanings into categories (Pedregosa et al.,
2011). However, this approach is not suitable for our small dataset. Moreover, accord-
ing to our multidimensionality hypothesis, certain words may be used with different
meanings, preventing such analysis to provide productive results.

R3 and R4 built the final taxonomy based on expertise. To guide this process,
we preliminarily discussed and identified the following goals: The resulting taxonomy
should (1) accurately describe the semantic space covered by our data, (2) be orga-
nized to highlight the different meanings used in the literature, and (3) serve scientific
inquiry, such as definition of future design and comparisons of studies.

In this regard, we adopted a qualitative approach, and performed a reflexive the-
matic analysis (Braun and Clarke, 2006; Clarke and Braun, 2021). Specifically, we
followed (1) an inductive orientation to data, and acknowledged our personal bias in
Table 2, (2) a semantic approach to meaning as per our task description, (3) a critical
framework focused on the topics of concreteness and abstraction, and (4) a relativist
theoretical framework as we acknowledge different realities as per our hypothesis of
multiple meanings being used in the field (Clarke and Braun, 2021).

The detailed procedure is described in Appendix A. We started by grouping the
codes into groups of related meaning. At this stage, these groups were quite broad,
such as “kind of external representation” or “subjective characteristics”. We discussed
disagreements until both parties were convinced of the solution. Importantly, this pro-
cess was not about one researcher being wrong and the other being right, but about
finding a solution that works for both parties. During that process, we noticed that
some of the codes seemed to describe the target concepts to be learned, some the rep-
resentations of them, and some the relationship of the learner with this representation.
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Therefore, we first tried to arrange our found groups in a triangle between the learner,
the representation, and the concept. R3 and R4 performed this step independently
(see Figures A5 to A8). During the discussion of conflicts, we found that we could
not distinguish clearly between a certain code describing the relationship between the
learner and the concept or the representation and the concept. This was also the source
of most disagreements in the taxonomies created by R3 and R4 in this step. Specif-
ically, we found that arguably the relationship between the learner and the concept
will always be mediated by the representations of the concept known to the learner.
We therefore modified this taxonomy into a linear model learner - representation -
concept. Finally, we refined the groups into axes that would be sufficiently specific to
be used in research and practise. We iteratively grouped codes until both R3 and R4
agreed every code was assigned a group. Moreover, we assigned all codes within an axis
to either a concrete or an abstract ending of this axis. This is in alignment with previ-
ous work that stated that such terms are relative rather than dichotomous (Fyfe and
Nathan, 2019). Therefore, we arranged the different meanings of abstract and concrete
along the linear dimension learner - representation - concept and for every meaning,
we present an axis between abstract and concrete supplemented with a design ques-
tion to make the taxonomy easier to use. For two axes, we only found codes for one
end of the spectrum. These axes are indicated by dotted lines in Figure 4.

4 Results

In this section, we describe our results, including the taxonomy, as well as a preliminary
outlook on past research leveraging the taxonomy.

4.1 Taxonomy

In this section, we present our final taxonomy, depicted in Figure 4. For each axis,
we also provide one example of codes comprised in our corpus. Moreover, we include
prompting questions to help categorize representations along each axis. In addition,
we complement this contribution with a blank template, in Appendix B (Figure B11),
that can be used to organize studies or interventions according to this taxonomy.

As justified in Section 3.4, we describe the learning process as follows: To learn a
concept (%), a learner (%) interacts with a representation (%) of ¢, designed through
mapping. abstract <> concrete axes are then organized at the interaction level, if they
relate to properties of the representation (#) as experienced by the learner (&), or at
the mapping level, if they relate to properties for how the representation (%) is defined
in relation to the concept (¢). Each axis is defined according to the representation
(Z) as it is the only element that can be acted upon when designing interventions or
studies. Indeed, while one cannot change the concept nor the learner, one can make
design choices for a representation in relationship to the underlying concept or the
target learner.

This distinction also enables the distinction between subjective and objective axes.
Indeed, all axes at the interaction level depend on the representation and on the learn-
ers, and are therefore related to the subjective experience of the learners. While these
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axes can be designed for, thanks to previous empirical evidence and design recom-
mendations, only actual measurement with target learners can ensure that the desired
effect indeed happened. For example, one might decide to design a more engaging rep-
resentation by creating a physical and interactive object. However, whether or not this
representation increases interest depends on the learner. Similarly, while a designer
might choose to design a highly sensorial representation, including visual and audio
components, whether or not these cues will be perceived by the learner depends on the
learners’ sensory abilities but also on how and whether they choose to engage with the
representation. In contrast, the axes at the mapping level only depend on the represen-
tation and the represented concept, and are therefore objective axes, solely depending
on the designer’s decisions. For example, the designer may decide to use real world
examples (situatedness), or to design an experiential representation (experientiality)
of the concept, and this does not depend on the learner.

In alignment with our goals, the axes of our taxonomy are organized such that
the axes differ in meaning. However, they may relate to each other, as making certain
design decisions along one axis may impact another one. For clarity, we discuss these
relationships separately in Section 5.1. Finally, for consistency, we named each axis
according to most common codes found at the concrete end of the spectrum.

Crucially, one representation may now be abstract along one dimension and con-
crete along another. For example, a simulation of an excavator is virtual (physicality
— abstract) and situated in real life (situatedness — concrete). Similarly, the repre-
sentation may be concrete for one learner and abstract for another. A mathematician
will find equations familiar (familiarity — concrete) while for the high school student,
the equations might seem unfamiliar (familiarity — abstract).

In the following, we describe the included axes and provide two exemplary data
excerpts from our corpus for each axis.

4.1.1 Interaction level: Between the learner and the representation

At this level, we discuss axes that are related to the perception of the representation by
the learner: familiarity, interest, simplicity, relevance and sensoriality. Specifically, to
consider designing according to these axes, one must know who the targeted learners
are as these axes refer to subjective experiences of the learners. We provide two data
examples per axis. For more data examples per code, refer to the supplementary
material.

Familiarity

Familiarity relates to how familiar or unfamiliar the representation is to the learner.
The axis is based on cases in which we found that authors used concreteness in relation
to a representation being meaningful, relatable, or accessible to the learner. Specif-
ically, from their past experiences, how much can the learner relate to the chosen
representation? Have they encountered similar representations before, in this context
or another? Familiarity may either mean that the representation utilizes references
that the learner is familiar with, independently of any mathematical endeavor, for
example the use of pizzas to represent groups, or that the learner is familiar with
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this specific representation and the way it maps to the underlying concept, for exam-
ple, how students finishing high school are familiar with graphs as representations of
functions and understand the relationship between the two.

For example, Rich and Yadav (2020) write “Familiar problems are generally con-
sidered to be at a lower level of abstraction than unfamiliar problems, [...]” (p.
196). Similarly, Altintas and Ilgiin (2017) write “Maths would get more difficult and
meaningless, Maths would get very abstract.” (p. 963).

Interest

Interest relates to how interesting, entertaining or engaging, as opposed to boring, the
learner may find the representation. For example, how aligned is the representation
with the learner’s areas of interest? How engaged is the learner when interacting with
the representation? This axis can refer to both the initial reaction of the learners, that
is, do they get interested in the representation and wish to interact with it and make
sense of it, but also prolonged and repeated engagement, that is, do they interact with
it for a long time and do they come back to it on their own.

Already now, we may contrast this axis against the familiarity axis. If a student is
unfamiliar with a representation, but finds it interesting and wants to interact with it,
this representation may be considered abstract or concrete, depending on what aspect
one focuses on.

For example, Altintas (2018) writes “According to the students’ views, when stu-
dents are told stories about a set of abstract boring subjects and concepts, [...]” (p.
258). Woodhouse (2012) highlights the subjective aspect of this axes when he writes
that “[a] familiar theme that runs throughout his work is the need to relate abstract
ideas to the concrete experience and interests of students, so as to avoid their becoming
inert” (p. 4).

Simplicity

Simplicity relates to how simple the representation is for the learner to understand, as
opposed to how difficult or complex. The complexity could be intrinsic to the concept
and thus translated to the representation, but it could also be extraneous and inherent
to the representation itself. Importantly, here, complexity is defined as perceived by
the learner, based on their abilities, but also on their estimation of their abilities
(self-efficacy). As a designer, this might mean deciding to leave certain aspects of the
concept out when designing the representation, as they are not relevant yet and might
be too complex for the learners based on their current knowledge, but also to refrain
from choosing representations that may make learners feel like they are not capable
of solving the problem.

For example, Lang and Pagliaro (2007) write “[...] by defining them in simple
understandable terms and by using concrete terms high in visual, pictorial or sen-
sory connotations” (p. 457). Similarly, Ganesh and Middleton (2006) write “Multiple
mathematical representations that are visual and symbolic allowing students to make
the move from simple to more complex and abstract notions are recommended for
understanding [...]” (p. 125).
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Relevance

Relevance refers to how useful or practical the learner will believe the concept is when
interacting with the representation. Here again, this axis focuses on the perception of
the learner: a certain mathematical concept may be useful in the sense that it has a
wide range of possible applications, but the representation may not be highlighting this
sufficiently in relation to learners’ past experiences. Does the chosen representation
make learners feel like they can use this mathematical concept in their own lives, be
it to solve other school problems, or out-of-school practical problems?

For example, Mitchelmore and White (1995) write “She wrote, ‘Andrew under-
stands area in the abstract but cannot yet apply it in practice’ ” (p. 55). Similarly,
Ottemo, Berge, and Silfver (2020) write “However, in its ‘personalized’ rooting of
knowledge and privileging of concrete and immediate usefulness of, for example, knowl-
edge of engines, it does correspond to a relative emphasis of horizontal over vertical
discourse” (p. 707).

Sensoriality

Sensoriality refers to how the representation can be accessed by the learner through
their senses, a more concrete representation thus leverages more senses or the same
sense with more stimulation. Importantly, this involves both design choices at the
representation level, and how these choices are leveraged by learners, either due to
their sensorimotor abilities or due to their interaction behavior. For example, one
design choice would be to integrate audio feedback in the representations. However,
this audio feedback would not be perceived by a learner with deafness or by a learner
who never performs the action that triggers said audio feedback.

For example, Gravemeijer (2011) writes “In reflection, we may conclude that trying
to make abstract mathematics concrete by representing the mathematics with tactile
or visual models, is highly problematic” (p. 7). In contrast, Durmus and Karakirik
(2006) write ”Manipulative materials are concrete models that involve mathematical
concepts, appealing to several senses including the socio-cultural needs that can be
touched and moved around [...]* (p. 120).

4.1.2 Mapping level: Between the representation and the concept

Furthermore, there are six axes that describe the mapping between the concept and
the representation: situatedness between idealized and real life, experientiality between
symbolic and enacted, specificity between universal and specific, informality between
formal and informal, approzimation between rigorous and approximate, and physicality
between virtual and physical. These axes are objective as they do not depend on the
learners.

Sttuatedness

Situatedness refers to how much the representation situates the concept in a real-
world context. For example, a representation of a mathematical graph as a water
network would be more concrete (situatedness — concrete) as such networks exist in
the real world (Chatain et al., 2023). However, representing the same graph as a set of
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circles (nodes) and lines (edges) would be more abstract as it is less context-specific
(situatedness — abstract).

Already now, we may point out that while increased situatedness may result in
higher familiarity as learners are more likely to be familiar with “real world” examples,
these two axes should not be confused with one another. Indeed, some learners, e.g.
high school students, may be familiar with non-situated representations, e.g. functions’
graphs. Moreover, situatedness is an objective axis, i.e. depends only on how the
underlying mathematical concept is mapped into the representation, while familiarity
is subjective, i.e. depends on how learners perceive said representation.

For example, Bleazby (2015) writes “[...] our experience of the world is embodied,
meaning it is subjective, concrete and situated” (p. 673). Similarly, Wolfmeyer (2018)
writes “This means that mathematics abstracts the concrete real world objects into
“ideal” shape and quantity” (p. 88).

Experientiality

Experientiality refers to the extent to which the representation is an experiential
mapping of the concept as opposed to a symbolic mapping. Typically, symbols are
arbitrary, essentially meaningless shapes that are only connected through the concepts
they represent via grounding (Harnad, 1990). In contrast, an experiential mapping is
concerned with ensuring that the representation is meaningful in and of itself, that is
that it is based on universal human experiences of the world in a way that conveys
meaning. Simply put, while experiential representations (ezperientiality — concrete)
intrinsically embed meaning, symbolic ones (exzperientiality — abstract) need to be
explained.

Already now, we should point out that the design of experiential representations is
often done by using multimodal cues, especially in the case of embodied design (Abra-
hamson et al., 2020), and may thus often result in increased sensoriality. However, the
experientiality axis is not concerned with how the learner experiences this embedding
but how the meaning of a certain concept is embedded in the given representation. For
example, while the representation may include tangible elements to articulate mean-
ing, the learner may not (or may not be able to) touch these elements. Moreover,
this embedding of meaning does not necessarily need to be physical, or accessible to
the senses of a learner, but it may further be imaginative. Therefore, while the axes
physicality and sensoriality may often align with this axis, they are distinct.

For example, Ottemo et al. (2020) write “[...] the teacher repeatedly emphasizes
the value of experiential and contextually rooted knowledge over the abstract and
the mathematically modeled” (p. 705). Coles (2014) highlights the transition from
abstract to concrete when he writes “[...] all students were able to make the transi-
tion between a visual or enactive representation of a movement/relationship and its
symbolic or formal description and go on to use this symbolism with confidence” (p.
29).

Specificity

Specificity relates to how much specificity or exemplarity, as opposed to generality or
universality, the representation supports. This is important to consider at the mapping
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level as some representations may be able to translate this specificity or not: For
example, using graph representations for functions will only enable the description of
specific functions, while symbolic representations can account for specific functions
(f :  — 2?) but also more general forms (f : R — R).

For example, Sezgin Memnun, Aydin, Ozbilen, and Erdogan (2017) write “[The
abstraction process] takes place in the form of isolating a concept from its specific char-
acteristics [...]” (p. 349). Similarly, Mildenhall and Sherriff (2018) write “[...] should
lead to a rich generalised and abstract understanding of mathematical concepts” (p.
402).

Informality

Informality relates to how different the representation is from representations that are
traditionally used in formal education contexts (Johnson and Majewska, 2022). For
example, using manipulatives would be more concrete (informality — concrete) than
using symbols (informality — abstract), as academic contexts often rely on symbols
rather than symbolisms. This aspect varies across countries, as different formal educa-
tion systems might leverage different representations, and may also change over time
as new modalities are integrated in learning materials.

For example, Zubainur, Johar, Hayati, and Ikhsan (2020) write “Using models or
symbols in solving problems to bridge the concrete level to a more formal level gets
emphasis in [Realistic Mathematics Education]” (p. 460). Similarly, Quigley (2021)
writes “They added there does not appear to be a clear advantage in using concrete
materials compared to ‘more traditional methods of instruction’ (Uttal, Scudder, &
DeLoache, 1997, p. 38)” (p. 62).

Approximation

Approximation refers to how approximate or inaccurate the representation is with
respect to the underlying concept, rather than accurate and rigorous. It is important
to note here that, while we present the axis from its concrete end to be consistent
across the section, we only found codes for the abstract end of the axis, meaning that
scholars insists on the rigor of abstract representations, and how they leverage logical
or analytical processes. That being said, both ends of the axis may be interesting to
discuss when designing representations. Indeed, to what extent are these design choices
informed by the concept, and to what extent is there a direct mapping between the
parameters defining the final representation and those of the concept? For example,
using colored cubes to represent units would be an approximate representation as the
color parameter does not relate to any aspect of the underlying concept: Indeed, while
the cubes all represent the number 1, they are perceptually different and may foster
misinterpretations or misconceptions.

For example, Jablonka, Ashjari, and Bergsten (2017) mention “Leviatan (2008)
goes as far as to describe the shift in criteria as a cultural gap: *Tertiary mathematics
is more abstract and emphasizes the inquisitive as well as the rigorous nature of
mathematics’ (p. 105)” (p. 75). Similarly, Zhou and Peverly (2005) write “Throughout
the curriculum, Chinese teachers emphasize the development of logical, analytical, and
abstract mathematical thinking” (p. 271).
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Fig. 5 Barplot of the number of occurrences of
words morphologically related to concrete and
abstract against each dimension of our taxonomy.

Fig. 6 Percentage of papers in our dataset
instantiating each dimension of our taxonomy.

Physicality

Physicality refers to whether or not the representation is implemented using a physical
object as opposed to a virtual one. Hybrid forms, such as physical objects overlaid
by virtual ones using Augmented Reality would land at the center of the spectrum.
Conceptually, this axis could be aligned with Milgram, Takemura, Utsumi, and Kishino
(1995)’s (reversed) Reality-Virtuality continuum, including both Augmented Reality
and Augmented Virtuality at the center of the axis.

For example, Pirasa (2016) writes “Examples given for a circular arc have been
divided into two groups as concrete objects seen in daily life such as a piece of bagel
and virtual models thought as arc that the swing makes or the clock” (p. 2847).
Similarly, Satsangi, Bouck, Taber-Doughty, Bofferding, and Roberts (2016) write “In
contrast to the physical form of concrete manipulatives, virtual manipulatives are
generally associated with computer-based technology [...]” (p. 2).

4.2 Outlook on past research

One of the goals for our taxonomy is to help classifying past research, and as such
getting a better understanding of the role of concreteness and abstraction in mathe-
matics education, but also to identify potential gaps. While the in-depth analysis is
out of scope for this paper, we present here an initial exploration in this direction in
Figures 5, 6, 7, and 8. Regarding the distribution of papers according to the dimen-
sions of our taxonomy, Figure 5 shows that some dimensions are mostly discussed as
abstract (e.g. physicality or approzimation) or concrete (e.g. situatedness or sensori-
ality). In Figure 6, we can see that the most discussed dimension is specificity, mostly
on the abstract side, while approximation is less commonly mentioned. With regards
to the evolution over time visualized in Figures 7 and 8, no clear trend is identifiable
from this initial exploration.
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Fig. 7 Lineplot of the number of occur-
rences of words included in our taxon-
omy, over the years, corrected by the
number of papers in our corpus pub-
lished that year.

Fig. 8 Lineplot of the percentage of papers in our cor-
pus instantiating each dimension of our taxonomy over the
years.

5 Discussion

This work presents the analysis process and subsequent taxonomy generation, describ-
ing the semantic landscape of concreteness and abstraction in mathematics education.
We now expand on this to illustrate how this taxonomy can be used to support scien-
tific inquiry: (1) we describe how the axes of the taxonomy may relate to each other,
and the potential of exploring these relationships, (2) we illustrate how the taxonomy
can be used to frame past research. We then discuss the relevance of our taxonomy
in light of previous frameworks, and finally, the potential for future work, and the
limitations of the current work.

5.1 Relationship between the axes of the taxonomy

Our goal when building this taxonomy was to identify the different meanings of con-
creteness and abstraction used in the literature, and therefore, the resulting axes in
the taxonomy differ in meaning. However, they do not necessarily differ in their impact
on design and learning. For example, sensoriality, i.e. the quantity and amount of
senses leveraged by the representation, differs in meaning from interest, i.e. how inter-
esting and engaging the representation is for the learner. For learners, however, high
sensoriality may result in increased engagement (Closser, Chan, Smith, and Ottmar,
2022).

We believe that exploring these relationships, as a researcher, but also as a field,
can help identify trends, gaps, but also highlight critical questions and foster inter-
esting conversations to grow as a field. In this section, we present a non-exhaustive
list of examples showing how the axes of our taxonomy can relate to each other. In
particular, relationships between objective axes, at the mapping level, and subjective
axes, at the interaction level, are quite interesting because they tell us how design
choices impact learners’ perception and subjective experiences. These examples of
relationships between axes are further visualized in Figure 9.

Physicality refers to the use of a physical representation over a virtual one. As
such, it is related to sensoriality, as a physical object will leverage the entirety of the
learners’ senses, and thus necessarily more senses than a virtual one.
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Situatedness refers to whether the representation is situated in the real world. As
such, this is likely to also increase familiarity, as learners are more likely to be familiar
with real-world objects. For example, choosing to represent groups as pizzas (Kaminski
et al., 2008; Trninic et al., 2020; De Bock et al., 2011), or equations as gears (Papert,
1980). However, one should note that something existing in the real world does not
necessarily mean that students are familiar with it, and the demographics and the
geographical and cultural contexts should be considered.

Moreover, situatedness is likely to increase perceived relevance as it directly shows
the concept in a potential context of use. The latter was also identified in a study in
which using a situated representation for graphs by representing them as pipe systems
significantly increased the perceived relevance of learners (Chatain et al., 2023).

Ezxperientiality refers to the use of an experiential mapping of a concept, rather
than a symbolic one. Often, especially in embodiment research (Ottmar et al., 2019;
Nathan, 2021), this is done by leveraging bodily movements or object manipulations.
Therefore, it is also likely to increase sensoriality and familiarity. Moreover, several
studies showed that such designs increase learners’ perceived interest (Cockett, Kil-
gour, Cockett, and Kilgour, 2015; Samur, 2012; Chatain et al., 2023; Sedig, 2008).
Importantly, while increased experientiality may increase sensoriality, it is impor-
tant to note that these axes are distinct: While the representations may be perceived
through various senses (sensoriality, interaction level), for example by having visual
and tangible features, the underlying meaning may not be expressed through these
features and thus not be highlighted by experiencing these features (ezperientiality,
mapping level).

Specificity can be connected to both situatedness and experientiality, in a bi-
directional manner. Indeed, when looking for specificity, one will add details to the
representation that anchor it in a certain context (situatedness), or that convey mean-
ing through an experiential mapping (ezperientiality). And vice versa, as situatedness
leverages a specific context, and as experientiality makes the representation more
specific to a certain concept, they both increase specificity.

Informality is defined in contrast to formal and traditional representations such as
the ones used in academic contexts. Research on math anxiety suggests that stepping
away from these representations may alleviate the negative effects of math-anxiety
(Jamaludin, Jabir, Wang, and Tan, 2024) and thus increase learners’ perceived interest,
but also even simplicity as they may feel more capable with this representations, and
thus find them simpler.

Finally, adding contextual features to the representation (situatedness) or embed-
ding meaning through an experiential mapping (ezperientiality), can potentially result
in a lack of rigor (approzimation).

In the future, we invite further reflections on the relationships between these
meanings. For example, we believe that a series of meta-analyses exploring these rela-
tionships in depth can lead to an even more refined understanding of how to design
concrete representations, and how these design choices impact the activated learning
mechanisms. Moreover, these considerations can also be used to simplify the taxon-
omy and thus improve its usability for practitioners. For example, if a meta-analysis
concludes that an experiential representation (i.e. experientiality) always results in
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Fig. 9 Examples of relationships between axes in our taxonomy. Arrows in light blue, from the map-
ping categories to the interaction categories are particularly interesting as they reflect how objective
design choices may impact subjective experience.

increased interest, the two axes can be combined by making the relationship explicit.
At this stage, we refrained from making these simplifications as we solely focused on
meaning.

5.2 Application on use cases

In this section, we illustrate how our taxonomy enables distinctions that are relevant
for research. Indeed, it is possible to both situate representations as well as findings in
the present taxonomy. In the following, we present three examples. First, Trninic et
al. (2020) as well as De Bock et al. (2011) both replicated a study originally conducted
by Kaminski et al. (2008) on concrete or abstract examples in preparation for transfer
with minor changes to the concrete representation. Second, Chatain et al. (2023)
conducted a single study with one abstract and two concrete conditions but with
the concrete conditions differing in how the learning content was concretized. Finally,
both Burns and Hamm (2011) and Shurr et al. (2021) compared virtual and physical
manipulatives, but found different results for different populations. We organize the
conditions of these use cases in our taxonomy, thus illustrating how it can be used as
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a tool for scientific inquiry, enabling nuanced and comprehensive comparisons of past
(and future) work. For space and clarity, we only mention the main relevant axes, i.e.
related to the design choices discussed in the referenced papers.

5.2.1 Familiarity versus situatedness

Kaminski et al. (2008) in the following K, De Bock et al. (2011) in the following
D as well as Trninic et al. (2020) in the following T presented the students with
either an abstract or a concrete example of a mathematical group (including addition,
inverse, and identity element, see Figure 10). In the concrete condition, K and D
both introduced an example including a group of three cups (which exist in the real
world), one full, one filled 1/3 and one filled 2/3 (situatedness — concrete). The full
cup was the identity element. However, T argued that as adding a full cup to a cup
would usually change the volume (familiar — abstract), it is more concrete if the
identity element is an empty cup (familiar — concrete). Looking at these studies in our
taxonomy, the representations chosen by K, D and T are all situated (situatedness —
concrete). However, the representation chosen by K and D is less familiar (familiarity
— abstract) than the one chosen by T (familiarity — concrete).

K and D both found that the abstract group outperformed the concrete group in
a symbolic (ezperientiality — abstract) transfer task involving an ancient game which
employs the same rules as the preparatory example task. However, D further assessed a
concrete (situatedness — concrete) transfer task. D was able to replicate K’s findings.
However, they further found that the concrete group performed better in the concrete
transfer. This goes to show that it is not sufficient to ask which representation is
best suited for learning, but that the content of the assessment and the design of the
representations employed in the assessment is also important.

The minor change in representation, which made the representation more famil-
iar, lead to T finding no difference between the groups in this task. However, as D,
they found that for a more concrete (familiar — concrete) transfer task involving par-
tially filled buckets of tennis balls, the concrete condition significantly outperformed
the abstract group. Applying the taxonomy, we could therefore argue that it is not
sufficient for a concrete example to include objects that exist in the real world, but
that additionally, the situation needs to be familiar, or realistic to the students.

This use case also illustrates the importance of the multi-dimensionality of our
taxonomy. For example, one may assume that a representation that is concrete in
terms of situatedness, that is, a representation that exists in the real world, will most
often also be more concrete on the familiarity dimension. While it is often the case,
failing to explicitly account for familiarity may result in unproductive representations,
such as the one presented in K’s study.

5.2.2 Experientiality versus situatedness

The study conducted by Chatain et al. (2023) investigated how learning with abstract
and concrete (situatedness — concrete or experientiality — concrete, see Figure 11)
representations impacts learning about graph theory, specifically the maximum flow
problem. The condition they denote as MNPL used an interactive representation
(experientiality — concrete) with the mathematical graphs represented with circles
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and lines (situatedness — abstract). The other condition (denoted as EMBD) also
used an interactive representation (experientiality — concrete). However, the graphs
were represented as pipe systems (situatedness — concrete). In both cases, the goal
was to maximize the flow that travels through the network, either in the circles and
lines representation (MNPL) or by maximizing the water flow between a lake and a
town (EMBD).

Chatain et al. (2023) found no difference between groups in engagement (interest
— concrete) but found EMBD to be perceived as more relevant by the students
(relevance — concrete) than MNPL (relevance — abstract). Applying the taxonomy,
we could argue that simply allowing students to interact with a representation is not
sufficient to allow them to relate to the problem, or to perceive it as relevant to them.
In addition, the problem needs to be situated in the real world.

With this use case, we illustrate that our taxonomy can also be further explored to
identify relationship between axes, for example the impact of situatedness on relevance
as demonstrated by Chatain et al. (2023).

5.2.3 Physicality and individual differences

As a final use case, we want to illustrate a situation, in which the same representation
might result in different outcomes based on individual differences. Here, we explore
the difference between physical manipulatives, for example physical blocks to per-
form additions, and virtual manipulatives, for example the same blocks, but on iPad
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(See Figure 12). Both conditions support experiential sense-making (experientiality —
concrete). However, virtual manipulatives are more abstract in terms of physicality.

When looking at neurotypical learners, Burns and Hamm (2011) found a positive
yet not significant advantage for physical manipulatives. However, through use case
exploration with 3 learners who have Autism Spectrum Disorder (ASD), Shurr et al.
(2021) found an advantage for virtual manipulatives. They argued that one of the main
advantages were that the virtual manipulatives resulted in more stable and accurate
manipulations.

Here again, looking at this within our proposed taxonomy, we can say that in these
studies, the increased physicality also resulted in increased sensoriality for the learners.
Indeed, although both types of manipulatives leverage touch, the physical manipu-
latives leverage it more (sensoriality — concrete). This distinction could potentially
explain why learners with AsSD favored the more abstract representation.

5.3 Relations to previous frameworks

With our taxonomy, we offer a data-driven exploration of the meanings of the words
“abstract” and “concrete” in mathematics education. However, other works have
attempted at defining these terms before, and offered conceptual multi-dimensional
frameworks to describe concreteness and abstraction. In this section, we show examples
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of how our taxonomy relates to these existing frameworks, and how, while capturing
some previously mentioned aspects, it also offers a more complete picture of the space
that can be explored when designing representations of mathematical concepts.

5.3.1 Organizing framework for categorizing external knowledge
representations by Belenky and Schalk (2014)

Our taxonomy aligns with the framework suggested by Belenky and Schalk (2014).
However, the two frameworks may be useful in different contexts.

In their framework, Belenky and Schalk (2014) organized external representa-
tions into two dimensions, groundedness and relevance. Groundedness here means to
be instantiated in some context while relevance refers to the relevance of individual
aspects of the external representation to the problem to be solved. Therefore, the
groundedness dimension may be part of quite a few of the axes found by us, such as
familiarity, relevance (in the taxonomy presented here, this axis refers to how relevant
the learner perceives a certain concept in a given representation), specificity, or - most
importantly - situatedness.

However, while their relevance dimension may be included in our situatedness axis,
we focus less on what the learner needs to solve a certain problem, but more on what a
representation will activate in the learner. We suggest that for practitioners who want
to design effective visual external representations for a specific problem, the taxonomy
by Belenky and Schalk (2014) may be suited. For research design, specifically if more
complex representations over several modalities are involved, our taxonomy will help
to organize cognitive processes found in connection with a wider set of axes.
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5.3.2 Concreteness fading

Looking at instructional design, a common approach discussed in mathematics educa-
tion is concreteness fading (Bruner, 1974; Fyfe et al., 2014), relying on a progression
of representations from enactive to iconic to symbolic.

Commonly, the enactive representation is a physical object (physicality — concrete)
that can be manipulated (sensoriality — concrete). Notably, however, Suh et al. (2020)
explained that related frameworks, such as the Virtual-Representational-Abstract one
(Bouck et al., 2017; Cooper, 2012), leverage a virtual manipulative (sensoriality —
concrete still, but physicality — abstract) in the first stage. The iconic form is usually a
visual and pictorial representation, meaning that it moves towards the abstract end of
the spectrum on the sensoriality axis, but also situatedness axis as the representations
gets further detached from the real world. Finally, the last form, the symbolic one, is
abstract along the experientiality axis.

We present this evolution on Figure 13, focusing on the main relevant axes for
clarity.

Interestingly, we can see that concreteness fading includes several axes at the map-
ping level, between the representation and the concept. This level is necessarily domain
dependent, as it depends on the underlying concepts, justifying why concreteness fad-
ing is difficult to generalize to other domains outside of mathematics (Kokkonen and
Schalk, 2021).

5.3.3 External representations in concreteness fading by Fyfe and
Nathan (2019)

The observation that representations involved in concreteness fading may involve dif-
ferent axes has been made before. Fyfe and Nathan (2019) explained that concreteness
fading is an under-specified theory, and suggested to (1) use the term “idealized”
representations rather than “abstract” representations, (2) consider “concrete” and
“idealized” on a spectrum rather than a dichotomy, and (3) consider several perceptual
and conceptual axes along which a representation can be more or less concrete.

They suggest four axes, which we compare to ours in Table 4.

Here, the main distinction is that our taxonomy separates the perceptual features
of the representation from its situatedness, as a representation can be perceptually
rich (e.g. leveraging various colors and patterns), while not looking real. Moreover,
we consider physicality slightly differently, as we consider the sensoriality, which is
learner-dependent and relates to how learners senses are leveraged by the representa-
tions, as well as whether the representation is virtual or physical (our definition for
physicality).

Importantly, their framework focuses on serving the design of representations
within the concreteness fading paradigm, and is well suited for this goal. In contrast,
our taxonomy is focused on a more general purpose, as illustrated by the extra nuances
it accommodates for, and supports the comparison of more types of concrete repre-
sentations. Because of these diverging goals, the approaches are also different: While
their framework is conceptual in nature, we offer a data-driven perspective of the
semantical landscape covered by the literature.
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5.4 Gaps for future work

In the future, we hope this taxonomy helps getting a better understanding of which
concrete and abstract aspects of a certain representation support meaning-making in
mathematics education, in four ways:

The first step towards this goal will be to conduct further analyzes according to
the axes of the taxonomy to get a fine-grained understanding of which concrete and
abstract aspects of representations truly support learning. For example, when arguing
that a concept is too abstract and therefore difficult to learn, being able to understand
exactly what makes the concept abstract may result in better design recommendations,
informed by such fine-grained meta-analysis. Is the concept abstract because it cannot
be seen? Then maybe we should design visible representations. Is it abstract because it
is universal? Then we may want to highlight the power of generalization by designing
several problems relying on the same concept. Is it abstract because it is not familiar
enough? Then we may want to choose a representation that relates to the learner’s
prior experiences.

Second, the relationships between the axes should be further discussed and explored
to identify trends and gaps, but also critical questions. As a field, this is an opportu-
nity to further reflect on how we design concrete representations, and what learning
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Axes from Fyfe and Nathan (2019)

‘ Comparison with our taxonomy

Physicality distinguishes two-dimensional repre-
sentations (e.g. drawing on paper) from three-
dimensional ones (e.g. manipulative).

This axis is not directly represented in our tax-
onomy. However, it is related to our sensoriality
axis, reflecting how many and how much senses
are leveraged by the representation. Our own
physicality axis, in contrast, refers to whether
the representation is virtual or physical, based
on the use of technology.

Perceptual richness refers to the visual features
of the representation, such as colors and pat-
terns, and how they are leveraged to make the
representation look real.

This axis included both our sensoriality axis,
regarding the visual features, and our situated-
ness axis, regarding how real the representation
looks like.

Familiarity refers to how close the representation
is to learners’ prior experiences.

This axis is directly equivalent to our familiarity
axis.

Context refers to how much the representation
in embedded in a narrative context.

This axis is contained in our situatedness axis,
which relates to how much the representation

exists in the real world. While narrative is a way
of doing this, it is not the only one. For example,
in our taxonomy, using a depiction of a mountain
to discuss the concept of derivatives would be
more concrete along the situatedness axis than
using a function graph.

Table 4 Comparison of the axes described by Fyfe and Nathan (2019) (left) with ours (right).

mechanisms they leverage. This includes exploring relationships between the axes in
the mapping level and those in the interaction level, and these relationships would
give us further understanding in how certain objective design decisions impact learn-
ers’ subjective experiences. This would enable further simplification of the taxonomy,
converging towards a data-informed design tool for practitioners.

Third, a thorough evaluation of previous research would help identify insights as
well as research gaps over the years, to formulate both design insights and future
research questions. We presented preliminary insights in Section 4.2, but future work
would include an in-depth meta-analysis of the role of concreteness and abstraction in
mathematics education, discriminating design parameters described in our taxonomy.

Finally, as discussed in the following limitations section, we believe this taxonomy,
both in its definition and in its usage, can be further refined. Future work would
include conducting interviews with experts, either researchers or practitioners, asking
them to organize their work using the taxonomy.

5.5 Limitations

This work comes with three main limitations.

First, while the coding of the data was done by four researchers with highly different
backgrounds and relevant expertise, the analysis process and most of the interpreta-
tions of the generated themes was performed by two educational researchers (R3, R4)
who shared a common doctoral supervisor. We tried to be highly transparent about
the positionality of the researchers involved (Table 2) and documented the analysis
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process intensively (in Section 3.4 as well as in Appendix A). However, it is clear that
the taxonomy at the present state is a first suggestion that should be used, criticized,
and further improved together with researchers and practitioners in the educational
field.

Second, we have chosen the ERIC database to obtain the corpus of this analysis.
While this choice provided us with a corpus that was highly education-specific, we
might have missed works by adjacent communities such as educational researchers
situated in computer science.

Third, as it is not possible to know exactly whether a list of adjectives is a stylis-
tic choice by the authors, listing several words of similar meaning to create emphasis
or whether it is a list of adjectives of different meanings, we have coded words “more
related to concrete and abstract”. For example, Bleazby (2015) writes that experience
is “subjective, concrete, and situated” (p. 673). In this case, we coded subjective and
situated as more related to concrete. However, Bleazby (2015) might have had a differ-
ent meaning of concrete in mind. Therefore, again, it is crucial to revise the taxonomy
based on user feedback and in collaboration with experts in the field.

Finally, we acknowledge that our taxonomy, in its current state, is quite complex
as it contains a large number of axes, making it potentially difficult to apply to use
cases. This is due to the fact that we focused first on building a taxonomy that reflects
our underlying data, to get the complete picture of the semantic landscape. However,
in the future, we hope that this taxonomy can be simplified through usage as well
as further meta-analyses and studies evaluating the impact of each axis on learning
outcomes and other relevant metrics.

6 Conclusion

We analyzed 368 articles using a qualitative data-driven approach to shed light on the
semantic landscape on abstraction and concreteness in mathematics education, and
identified eleven axes. We found that five of these axes focused on the interaction level
between the learner and the representation (i.e. how is the representation perceived
by this specific learner, in a subjective manner) and the remaining six axes focused
on the mapping level between the representation and the concept (i.e. what aspects of
the concept are represented and how, in an objective manner). Here, we presented the
taxonomy, illustrated how it can be leveraged to reflect on how we consider concrete
representations, and presented three use cases to show how it can be used to organize
existing research.

Leveraging this tool, we would like to encourage the following future endeavors.
First, with our taxonomy, we focused on providing a complete overview of the meanings
of the terms “concrete” and “abstract” in the mathematics education literature. Now,
the relationships between these axes should be further investigated: What relationships
have been explored, and validated or disproved? What gaps remain to be explored?
We offer an initial discussion in this paper, but we believe that pursuing this approach
thoroughly and with the wider community can raise critical questions and inquiries
in the field, and eventually, through empirical evidence, help refine the tool towards a
simplified version that can be widely used in practice.
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Second, we encourage scholars to use the tool to better situate their studies and
designs in this landscape. As illustrated in our paper, we believe that this opens the
floor to nuanced comparisons of existing studies, and further conversations about both
design and learning processes leveraging concreteness and abstraction. We believe that
our comprehensive taxonomy as well as these explorations can further facilitate future
meta-analyses and reviews of the field.

Third, we believe that this tool should evolve through practice and discussions in
the community. Therefore, we would like to encourage researchers and practitioners
alike to use the taxonomy to reflect on their own studies and design processes, and
share their experiences and suggestions. While our approach is anchored in data, this
tool is designed to evolve and improve through continued use.

To support these endeavors, we provide three dedicated templates in Appendix B
of this manuscript for interested readers who would like to apply the framework to
their own work.

Finally, in addition to the future avenues discussed in Section 5.4, we note that
this taxonomy might be applicable to other STEM disciplines as well. Specifically,
many scientific concepts are physical in the sense that they exist in the real-world.
However, they are often not perceptible (sensoriality — abstract), either because they
are too small, for example molecules, or too big, for example the atmosphere (Niebert
and Gropengiesser, 2015). This taxonomy might support organizing findings related
to targeting and representing imperceptible concepts.
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Fig. A1 Word clouds of the words selected for abstraction (left) in concreteness (right) at the end
of the pre-processing phase.

Fig. A2 The codes after a first familiarization and organization into codes related to external
representations, overarching characteristics, subjective characteristics and contextual codes.

Appendix A Thematic analysis process

After an initial pre-processing phase, the remaining words were visualized in word
clouds (see Figure Al).

The detailed thematic analysis process based on these words is described in the
following. For a full list of the codes used in this process together with data examples,
please see the corresponding table in the supplementary material.

Iteration 1

The first list including all occurrences higher than 4 and excluding algebra, on, the,
non and mathematics were transferred to post-its. R4 sorted the post-its a first time
according to thematic relations (see Figure A2).

In summary, the following concrete categories were generated:

¢ Kind of external representations (visual, pictorial, tactile, stories)

e Descriptions of external representations depending on context (real, informal,
particular)

® Subjective characteristics (familiar, everyday experience, move, interest)

e Higher level descriptions (process, (ir)relevant, simple)

® Concreteness fading
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Discussing these first organization, the researchers R3 and R4 found that some
concrete codes seemed to describe the concept, some the external representation
of it (the physical object), some the interaction between the representation and the
learner and some the subjective experience of the learner (i.e. their conceptualizations
and experiences). They organized the codes accordingly into a first graph structure
presented in Figures A3 and A4.

At this point, the following list of words were removed either due to relating to
terms specific to concreteness fading and therefore having an analog in the abstract
codes (e.g. level, stage, phase, conditions) or due to them being clearly coded related to
concrete as synonym for specific (e.g. strategies, methods, operations, way): strategies;
methods; operations; level; stage; phase; conditions; form; problems; fading; concepts;
shapes; way; tasks; nature; instruction.

For the abstract terms, sorting was more diverse as the term was used in many
different ways to assign a certain value or importance to a concept. Generally, we
found that abstract often related to either being fundamental or being universal and
hence being conceptualized vertically. Alternatively, abstract was conceptualized hor-
izontally by indicating relationships, patterns and similarities. We also found codes
connected to the learner (i.e. thinking, conceptualizing) and to prejudice (difficult,
boring) (see Figures A3 and A4). Finally, some codes related to tools for abstracting
such as processes, algorithms and procedures.

We removed the following words due to the same reasons as above: activities;
fractions; rings; set; form; phase; dots; topics; stage; nature; objects; sessions; manner;
ways; subjects; step; condition; content; approach; problems; domains.

Iteration 2

After the first iteration, the authors decided to distinguish between codes associated
to the learner, the representation and the concept. Hence, separately, R3 and R4
reorganized the codes according to these three poles as well as the interactions between
them (see Figures A5, A6, A7, and A8). Initially, they also assumed there to be
codes describing the interaction between the learner and the concept. However, they
later found that any understanding of the concept by the learner is mediated by the
representation.

Iteration 3

In a third iteration, R3 and R4 re-arranged the triangle representation to a linear
taxonomy learner-representation-concept, resulting in the final taxonomy described in
Section 4.1.

Iteration 4

After the first revision round on February 07, 2025, we expanded our corpus to
include literature of younger ages as well, as described in the methods section. This
resulted in several new words for concrete: exploration, experimentation, empirical,
manipulative objects, metaphors, fun, real objects, perception, app-based manip-
ulative, operational, rods, physical materials, personalization, discovery, operational
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stage, features, diagrams, computations, bodily experiences, items, procedure,
understandable, media. And several new words for abstract: geometry, geomet-
rical, advanced, compound, teacher, tasks, algebraic structures, systems, online,
app-based manipulatives.

R3 and R4 identified the words related to representations that are not yet rep-
resented in the taxonomy (in bold above), and integrated them. This step did not
change the categories of the taxonomy, but the new words are integrated in the final
representation of the taxonomy.
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Appendix B Templates

In alignment with our goals, we provide three templates:

e A template to reflect on the relationships between the categories of the taxon-
omy, to identify trends and gaps in existing research and generate critical question
(Figure B9),

® a template to organize existing studies and conditions within our taxonomy
(Figure B10),

e and a template to reflect about the concrete and abstract nature of learning
materials (Figure B11).

We also attach these templates in full resolution in the Supplementary Materials.
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Fig. A8 R4’s learner-representation-
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Abstract Learner Concrete

familiarity

interest

A

simplicity

A

relevance

sensoriality

A\

Interaction

Representation

A

situatedness

experientiality

specificity

A4

A

informality

Y

approximation

physicality

Mapping

Concept

Fig. B10 Template to categorize learning materials according to the taxonomy of abstraction and
concreteness.
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Abstract

Abstract

What aspects of the

Learner

% What are the relations

representation between the representation
might be unfamiliar and the learner's
to the learner? past experiences?
< >

What aspects of the
representation
might be perceived as
boring by the learner?

What aspects of the
representation might be
perceived as engaging or

What aspects of the
representation
might be perceived as

- interesting by the learner?
>

What aspects of the
representation
might be perceived as

difficult by the learner? - — simple by the learner?
< simplicity

What aspects of the
representation might make
the concept seem
irrelevant to the learner?

What aspects of the
representation might make
the concept seem
relevant to the learner?

What aspects of the
representation
are purely visual?

relevance >

What aspects of the
representation
can be perceived
with several senses?

Interaction

Representation

What aspects of the
representation are
idealized and detached
from the real world?

What aspects of the
representation are
symbolic with respect to
the concept?

What aspects of the
representation
exist in the
real world?

What aspects of the
representation are designed as
an experiential mapping
of the concept?

How much
generality or universality
does the

How much
specificity or examplarity
does the

_, representation support? g f representation support?
< P icity

What aspects of the
representation are formal
(i.e. in accordance

What aspects of the
representation are informal
(i.e. in disagreement

with convention)? m with convention)?

What aspects of the
representation
are rigorously
based on the concept?

What aspects of the
representation
are loosely
based on the concept?

approximation

Is the representation
implemented
using technology?

Is the representation
implemented as a
purely physical object?

Mapping

Concept

Concrete

Concrete

Fig. B11 Template to reflect on learning materials according to the taxonomy of abstraction and

concreteness.
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